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The intricate and tightly regulated organization of eukaryotic cells into spatially and functionally distinct
membrane-bound compartments is a defining feature of complex organisms. These compartments are defined
by their lipid and protein compositions, with their limiting membrane as the functional interface to the rest of
the cell. Thus, proper segregation of membrane proteins and lipids is necessary for the maintenance of organelle
identity, and this segregation must be maintained despite extensive, rapid membrane exchange between com-
partments. Sorting processes of high efficiency and fidelity are required to avoid potentially deleterious mis-
targeting andmaintain cellular function. Althoughmuchmolecularmachinery associated withmembrane traffic
(i.e. membrane budding/fusion/fission) has been characterized both structurally and biochemically, the mecha-
nistic details underlying the tightly regulated distribution ofmembranes between subcellular locations remain to
be elucidated. This review presents evidence for the role of ordered lateral membrane domains known as lipid
rafts in both biosynthetic sorting in the late secretory pathway, as well as endocytosis and recycling to/from
the plasma membrane. Although such evidence is extensive and the involvement of membrane domains in
sorting is definitive, specific mechanistic details for raft-dependent sorting processes remain elusive.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The self-organization of cellular macromolecules into structurally
and functionally distinct subcellular compartments is one of the most
t, Houston, TX 77030, USA. Tel.:

.

intriguing and complex questions in biology. Most eukaryotic cell
organelles are delimited by a lipid and protein membrane, which sepa-
rates the cytoplasm from a topologically disconnected aqueous lumen.
Because these membranes are the interface between the organelles
and the rest of the cell, their molecular identities (i.e. protein and lipid
composition) play a key role in defining the function of a given compart-
ment as a whole. Therefore, the efficient and accurate sorting of mem-
brane molecules between organelles underlies much of subcellular
organization.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamem.2014.07.029&domain=pdf
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Recent decades have seen the discovery and characterization of the
extensive proteinaceous machinery responsible for intracellular mem-
brane transport. One general theme is that membranes are sorted and
transported by small (i.e. less than 100nmdiameter) vesicular intermedi-
ates produced by the action of a “coat protein”, which are actually large,
multiprotein complexes. The classic examples of such “coatomers” are
the COat Protein complexes (COPI and COPII) thatmediate vesicle forma-
tion and transport between the endoplasmic reticulum (ER) and early
Golgi, and the polymerized clathrin cages in the late secretory pathway
and endocytosis. An alternative vesicle-producing apparatus – that does
not utilize a coated intermediate – is the ESCRT machinery responsible
for lumen-directed vesicle fission in endocytosis [1], virus budding [2],
and membrane repair [3]. These machines are responsible for the gener-
ation and fission of transport vesicles, but all require additional factors for
targeted, vectorial vesicle transport to the appropriate cellular compart-
ment and fusion with the target membrane. These functions are served
in part by the famous SNARE (Soluble N-ethylmaleimide-sensitive-
factor Attachment protein REceptor) proteins [4], which determine
where and when a given transport vesicle will fuse. In addition to
this core machinery, hundreds of ancillary proteins regulate subcel-
lular traffic, including the vital sorting function served by Adapter
Proteins (AP1-4 [5]) to selectively recruit specific proteins into the
transport carriers, and the Rab GTPases that act as “address labels”
for the various organelles [6].

In contrast to thewealth of information available for subcellular pro-
tein sorting, amechanistic understanding of how lipids are distributed in
cells remains elusive. Organellar membranes have distinct lipid compo-
sitions (though clean, detailed data to this point are scant) that are likely
required for their function and cannot be accounted for solely by enzy-
matic production/turnover [7–9]. However, how the cells achieve this
steady-state heterogeneity despite active and rapid exchange of lipids
between compartments remains unclear, in part because the rules for
sorting lipids and proteins are quite different:

(1) lipids are not sorted absolutely, i.e. all membranes contain broad-
ly similar lipid classes (e.g. phosphatidylcholine), but the specific
molecular identities and, more importantly, relative concentra-
tions of the lipids vary between compartments

(2) lipids are not covalently linked into membranes, but are orga-
nized by weaker intermolecular interactions which give rise to
the fluid matrix of the bilayer

(3) whereas proteins are often sorted by specific intermolecular cou-
pling between a cargo protein and the coatomer, lipids are gener-
ally too numerous and too small for such one-by-one selection
(although there are important exceptions [10–12]).

Because of these unique features, specific mechanisms are required
for intracellular lipid sorting. Membrane lipid monomer transport
through the cytoplasm does not occur on cell-relevant time scales
(though cholesterol transport may be an exception [13]), because de-
spite lipids not being covalently incorporated into the bilayer, the entro-
pic penalty for hydrating their aliphatic regions makes spontaneous
diffusion of lipid monomers into the cytoplasm extremely unfavorable
[14]. In some cases, carrier proteins facilitate monomeric lipid transport
by providing a hydrophobic cavity [10–12]. Additionally, physical con-
tact sites between the ER and other organellar membranesmay provide
channels for direct lipid transfer between organelles [15]. However,
these mechanisms are insufficient for the whole lipidome sorting
observed in subcellular organelles; thus, membrane lipids, like proteins,
are generally traffickedby vesicular intermediates, begging the question
of how such vesicles “choose” the lipids destined for a particular
compartment.

Lateralmembrane domains of distinct compositions provide an ideal
platform for lipid sorting. The archetype of such domains aremembrane
rafts, defined as lipid and protein assemblies whose formation is depen-
dent on the preferential interactions between specific lipids (sterols,
glycosphingolipids, and saturated lipids) that drive the formation of
a liquid-ordered membrane state that coexists with a relatively disor-
dered state as fluid, lateral domains [16]. It is important to emphasize
that the conception of rafts as long-lived, large, stable domains is impre-
cise and probably incorrect — rafts in the PM are believed to be small
and highly dynamic [17], and there remains active controversy about
the physical properties, compositions, and mechanistic consequences
of raft domains. However, several recent observations – most notably,
microscopically observable liquid–liquid phase separation in biological
membranes [18–22]– have provided strong evidence for their existence
and biological relevance. Moreover, the proposed size of such domains
(tens to hundreds of nm [17]) and their capacity to sequester both lipids
and proteins provide raftswith ideal features for acting as sortingmech-
anisms in membrane trafficking.

This review focuses on evidence supporting the central role of
raft domains in subcellular membrane sorting. We start with a dis-
cussion of the genesis of the raft hypothesis to explain the distinct
membrane compositions of apical and basolateral plasma mem-
brane (PM) domains in polarized epithelia, and expand on the gen-
eral utilization of these domains in secretory sorting and trafficking
to the PM in both polarized and non-polarized cells. Next, we sum-
marize the robust literature describing raft domains in endocytosis
and sorting in the endocytic system, before briefly reviewing the
scant information on the protein machinery that supports raft-
mediated trafficking. As with much of the raft field, there remain
more questions than answers. However, this review is intended to
provide a primer to the topic, while highlighting the abundant
evidence in support for the hypothesis that rafts are a key mediator
of the specific membrane compositions of several subcellular
organelles.

2. Rafts in secretory traffic

The Golgi Apparatus (GA) is the intermediate between the site of
most lipid synthesis (ER) and other membrane-bound organelles, thus
making it a major membrane sorting station. More specifically, while
the “cis” portions of the GA (i.e. those associated with bi-directional
membrane exchange with the ER) are responsible for the post-
translational modification and refinement of membrane proteins, the
most “trans” cisterna of the organelle, termed the trans-Golgi network
(TGN), is the site of selection for export of membrane (and luminal)
components via newly assembled transport carriers destined for their
final cellular location (Fig. 1). In some cases (e.g. the mannose-6-
phosphate receptor for lysosomal delivery [23]), the sorting determi-
nants are simple and clear. However, for most membrane lipids and
proteins, the mechanisms of distribution remain unresolved. In epithe-
lial cells, this problem is further complicated by the existence of a highly
specialized PM domain, the apical PM, coexisting contiguously with a
basolateral PM. These domains must be compositionally distinct be-
cause their functional requirements are very different: the apical PM
must often provide a robust barrier between the cell and a harsh and in-
hospitable environment (e.g. gut or kidney lumen), whereas the
basolateral is responsible for exchanging information and nutrients
with the rest of the body.

2.1. Genesis of the raft hypothesis

An early observation in epithelial cell biology was that not only the
protein, but also the lipid composition of the apical PM is highly differ-
entiated, most notable in the enrichment of glycosylated sphingolipids
(GSLs) and cholesterol, and relative depletion of glycerophospholipids
(see studies cited in Ref. [24]). The sorting of both glycosylated proteins
[25] and lipids [26] to the apical surface seemed to occur simultaneously
in the TGN, suggesting a membrane-mediated mode of action, which
was confirmed by the isolation of distinct vesicle subtypes originating
at the TGN and containing either apical or basolateral cargo [27]. To ex-
plain these observations, a model based on the known propensity for



Table 1
Involvement of raft domains in various endocytic pathways and their cargo.

Endocytic
pathway

Clathrin coated pits Caveolae CLIC/GEEC Flotillin Arf6
dependent

Raft
involvement?

No (a) Yes (b,c)
Cav1 binds cholesterol

Yes (d,e)
GPI-AP found in lipid rafts

Likely Unclear
(f)

Cholesterol
dependence

Unclear (g)
Affected by cholesterol depletion, but might be due
to cellular toxicity

Yes (b,c) Yes (d,e) Not known Yes (h)

Implicated
proteins

Clathrin (i), epsin (j), intersectin (k), dynamin (l),
Arf6 (m), PKC (n), Rac1 (o), cdc42 (p)d, RhoA (o)

Caveolins (b,c), PKC (q), SRC (q), cdc42
(r), intersectin (r), dynamin (s)

RhoA (t), GRAF (u), cdc42 (d),
Arf1 (v), cortactin (w), Arf6 (v)

Flotillin (x) Arf6 (h)

Known cargo GPCR (y) transferrin receptor (j) anthrax toxin (z),
cadherin (aa), LDL (bb), influenza (l)

GP60 (cc), CTX (ee), SV40 (ff), cadherin
(aa), GPI-AP (ff), LacCer (gg), IL2 (hh)

IL2, SV40 (e), GPI-AP (d,e) CD59,
proteoglycans
(ii)

MHC I (h),
CD59
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sphingolipids to self-associate via their intramembrane hydrogen bonds
[28] posited that membrane lipids and proteins separate into microdo-
mains representing the composition of their eventual target compart-
ments (i.e. apical and basolateral PM) [24]. A critical validation of this
model came with the observation that the “apically-directed”microdo-
mains could be specifically isolated by their relative resistance to non-
ionic detergents (usually Triton X-100), and that they gain insolubility
late in the secretory pathway, i.e. in the TGN [29,30]. Components of
these detergent-resistant membranes (DRMs) were similarly observed
to be involved in PM-directed traffic in non-polarized cells [31], suggest-
ing that the glycosphingolipid-enriched entities are a general feature of
TGN-to-PM sorting (Fig. 1). The physicochemical mechanism by which



Fig. 1. Involvement of raft domains inmembrane traffic. Lateral membrane domains aid in sorting of protein and lipid components between themembranes of subcellular compartments.
Membrane rafts (green striped regions) are likely present in the latter stages of the secretory pathway (i.e. the TGNand PM) and early stage of the endosomal pathway (early and recycling
endosomes). Rafts recruit components for coordinated exit from a source compartment and traffic to a donor compartment via a raft-enriched vesicular carrier (blue shading around
membranes). Such vectorial raft transport includes TGN-to-PMsorting, specific endocytosis at the PM, and recycling from theendosomal system in the EEand RE. The raft pathway coexists
with a number of coat/adapter-mediated pathways (red shading). The protein machinery mediating raft trafficking is incompletely characterized, but includes caveolins and flotillins,
lectins (e.g. Gal9), the small GTPase Arf6, Annexin 13b, and specific SNARE proteins (Syntaxin 3/6 and SNAP-23).
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cholesterol-driven, sphingolipid-rich domains mediate lateral mem-
brane sorting coalesced from the convergence of cell biological studies
with a wealth of biophysical observations in synthetic model mem-
branes. In these (incl. Langmuir monolayers [32], supported lipid bilay-
ers [33], and Giant Unilamellar Vesicles [34]), large-scale equilibrium
separation of a cholesterol-dependent liquid ordered domain – the
synthetic analog of in vivo rafts – is observable across a physiologically
appropriate range of lipid mixtures.

The model combining these observations to explain post-Golgi
sorting by lateral, lipid-driven membrane domains is known as the
lipid raft hypothesis [35]. Becausemuchof thedata in support of this hy-
pothesis came from DRM isolations, this preparation became synony-
mous with lipid rafts. However, it is vital to emphasize the crucial
(previously made [36–40]) point that DRMs should not be equated
with in vivo rafts, or any structure existing in the cell prior to detergent
treatment. Cold detergent extraction is unlikely to reflect the specific
underlying reality of a live cell, and the interactions between detergents
and native membranes are complex, unpredictable, and difficult to con-
trol, making cellular extrapolations from DRM experiments inherently
speculative. Although recent experiments in intact isolated membranes
have confirmed some of the DRM-based inferences into raft com-
position and function [18,20], the volume of such studies pales in com-
parison to those relying on detergent resistance. Because it would be
obtrusive to point out the artifactual nature of DRMs for every study
referenced here, the rest of the text will conform to the inferred
relationship between inclusion in DRMs and in vivo raft association;
however, the reader is cautioned to take a skeptical view.

2.2. Polarized sorting in epithelial cells

The seminal observations in epithelial cells touched off a flurry of
investigations that defined the lipid and protein compositions of raft
subdomains and the mechanisms by which they mediate sorting and
trafficking. Some of the earliest proteins found to be associated with
the DRMs – and by implication, rafts – were membrane proteins
anchored to the lumenal side of the PM by glycophosphatidylinositol
(GPI-AP) [29,30,41]. These observations suggested a solution to the rid-
dle of how to sort proteins without cytosolic features that can be recog-
nized by canonical sortingmachinery. Both glycosylation and lipidation
were also identified as raft-mediated apical PM sorting determinants for
transmembrane proteins (TMPs), including thosewithN-glycosylations
[42,43], O-glycosylations [44], and S-acylations (i.e. palmitoylation)
(reviewed in Ref. [45]). A key findingwas that the efficient apical deliv-
ery of raft-associated proteins was interrupted by inhibition of either
cholesterol [46] or sphingolipid [47] synthesis. Recently, these in vitro
inferences were confirmed by an exciting in vivo study, which showed
that organogenesis in Caenorhabditis elegans –which requires assembly
of a polarized epithelium–was critically undermined byperturbation of
in situ GSL biosynthesis [48].

A number of exceptions challenge the central role of rafts in
polarized PM sorting in simple epithelia (reviewed in Ref. [49]).
For example, not all GPI-APs are apically directed, even when
these are associated with DRMs [43,50]. Further, raft lipid pertur-
bations do not always lead to mis-sorting, even when they induce
disruption of DRMs [51]. To explain these discrepancies, the model
was amended to include the stabilization/coalescence of small and
dynamic raft domains into practically useful platforms by protein-
mediated clustering of raft components. The key evidence for this
hypothesis was the observation that apically directed GPI-APs
clustered into large, multimolecular, cholesterol-dependent ag-
gregates, whereas basolateral GPI-APs remained as monomers
[50]. These clusters, which dramatically inhibit the lateral mobili-
ty of their constituent proteins, seem to disperse upon arrival at
the PM [52], into homodimeric “unit rafts” [53] or homoclusters
[54]. At the moment, it is unclear whether clustering of raft com-
ponents stabilizes the domains themselves [33,55], or instead in-
creases the affinity of proteins for pre-existing domains (as has
been shown in model membranes [20,56]). It is most probable
that both effects synergize to underlie the important function
served by clustering.
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Intriguingly, these raft-mediated trafficking mechanisms also seem
to be involved in more complex epithelial tissues like hepatocytes,
which rely on basolateral-to-apical transcytosis for differentiation
of PM domains. In these, clustering of GPI-anchored GFP mediated
efficient apical PM transcytosis, with an unclustered point mutant of the
same protein accumulating in an endosomal compartment [57]. Also,
like in simple epithelia, the flow of cargo to the apical PM can be
interrupted by depletion of raft lipids (i.e. cholesterol and sphingolipids)
[58].

Because stabilized raft domains appear to be amajor mediator of se-
cretory trafficking to the apical PM, it stands to reason that this mem-
brane would be a raft-enriched compartment. Consistently, the apical
PM was shown to be a “percolating” raft domain, i.e. one in which the
raft phase is the continuum interrupted by non-raft inclusions [59].
This contrastswith non-polarized cells, whose PMs are believed to pres-
ent a continuous non-raft state with dissolved raft domains [60,61].
However, it is important to emphasize that the relative fraction of raft
versus non-raft phases in anymembrane is not well established, and ar-
guments for a majority raft phase have recently been forwarded in cel-
lular biophysical literature [21,62–64].

The site of separation for apically directed raft components has tradi-
tionally been understood to be the TGN. Dramatic images of apical cargo
separating from basolateral/non-raft cargo confirmed separation of
these membranes in the Golgi prior to generation of a carrier vesicle
[65]. However, it is also possible that the appearance of raft lipid enriched
domains happens earlier in the biosynthetic pathway. The cholesterol
concentration in the ER is low (b5mol% [7]) and almost certainly insuffi-
cient to support cholesterol-mediated domains; however, the relative
fraction of cholesterol increases progressively through the Golgi stacks
[66] peaking in the PM [67], which can be as high as 40–50 mol% choles-
terol [68]. Similarly, glycosylation of sphingolipids occurs throughout the
GA. Together, these effects lead to a thickening of the membrane in the
late secretory pathway [69], potentially reflective of increased raft-like
membrane content. It is difficult to estimate theminimum(ormaximum)
cholesterol and sphingolipid fractions at which robust separation of raft
domainswould be expected, althoughmodelmembrane studies can pro-
vide a guide. In these, liquid–liquid domains can be observed with as low
as 10% cholesterol [21], suggesting that domains may exist and mediate
sorting also in the cis Golgi regions, and maybe even as early as the ER
[70,71]. Fully consistent with this proposal, a recent combination of
modeling and experimental observations suggested that a two-phase
membrane system best explains Golgi maturation [72].

2.3. Raft-mediated sorting in non-epithelial cells

Although most of the attention in membrane-mediated subcellular
traffic has been paid to polarized sorting in epithelial cells, non-
polarized cells also require accurate and efficient membrane distribu-
tion, and despite the relative (compared to the apical PM) paucity of
glycosphingolipids in the PMs of non-polarized cells. For example, as
in epithelial cells, perturbation of sphingolipid organization inhibits
transport carrier formation in the GA in HeLa cells, leading to defective
secretion [73]. Similarly, cholesterol is required for efficient PM localiza-
tion of proteins that localize to the apical PM in epithelia (e.g. influenza
hemagglutinin [46] and GPI-APs [74]). Although non-polarized cells do
not obviously require a mechanism for spatially distinct PM delivery,
there remain many advantages to having parallel routes to the cell sur-
face. Consistently, two such routes have been observed in both BHK and
CHO cells [75], with one mediated by raft domains. Moreover, non-
polarized cells clearly have mechanisms to specifically sort cargo that
would be apically-directed in polarized cells [75,76]; however, the
eventual destination of such cargo seems to depend on cell and cargo
type.

The raft-mediatedGA-to-PM sorting track in non-epithelial cellswas
directly demonstrated in a series of methodological tour de force exper-
iments in the budding yeast, Saccharomyces cerevisiae [77–80]. By a
combination of yeast genetics, sophisticated immunoisolation of intact
subcellular compartments, and quantitative shotgun mass spectrome-
try, it was demonstrated that lipid composition of the ~100 nm traffick-
ing intermediates leaving the TGN for the PM was wholly distinct from
the source compartment. These vesicles were clearly enriched in sterol
and glycosphingolipids, in addition to being significantly more ordered
[78]. With regard to almost all lipid categories and features, these car-
riers proved to be intermediate between their source and destination
compartments (i.e. the TGN and PM), definitively confirming lipid-
based secretory sorting [77].

2.4. Sorting in neuronal plasma membrane analogous to epithelial cells

Neuronal PMs represent a curious hybrid between the sharply
defined PM domains of polarized epithelia and the undifferentiated
membrane of non-polarized cells. Despite the absence of the lipid-
impermeable tight junctions that act as diffusion barriers to maintain
the extreme lipid compositional heterogeneity that characterizes epi-
thelial PM domains, the compositional uniqueness of axonal versus
somatodendritic regions of neurons underlies their functional speciali-
zation [81]. Raft-mediated protein sorting in neurons was observed to
be highly analogous to epithelial cells, with the axonal delivery of pro-
teins that define apical PM domains being dependent on intact raft do-
mains [82]. By constraining the delivery of axonal proteins and lipids,
raft-mediated trafficking appears to be required for the maturation of
the axon [83], and thus functional neuronal maturation.

3. Rafts in endocytic traffic

Classically, intracellular membrane traffic has been separated into
outward and inward routes referred to as biosynthetic and endocytic
pathways, respectively. In reality, there is extensive cross-talk between
these cellular highways, with direct transit from the biosynthetic
machinery to late endosomes and/or lysosomes [84] aswell as shuttling
of endocytosed components back to the Golgi for processing and re-
sorting. Although they are treated here separately, it is important to em-
phasize the extensive integration of the membrane trafficking system
and thus the critical organizing role that membrane domains play in
both pathways.

3.1. Rafts in endocytosis from the plasma membrane

Endocytosis and vesicle formation by polymerization of the clathrin
triskelion is one of the most architecturally striking and functionally
important aspects of eukaryotic cell biology, and so unsurprisingly,
clathrin-mediated endocytosis (CME) is one of the most well-studied
and thoroughly characterized cellularmechanisms [85]. However, com-
plete deletion of clathrin function does not abrogate all endocytosis [86],
suggesting multiple parallel routes for internalization of surface mem-
branes and extracellular material. A significant observation is the recip-
rocal exclusion between clathrin and membrane rafts — i.e. proteins
endocytosed by CME, and clathrin itself, are generally excluded from
DRMs, while raft-associated proteins are often excluded from clathrin-
coated pits [87] (though there are exceptions [88]). Moreover, whereas
all raft functions are believed to be sensitive to depletion of PM choles-
terol, CME is not [89,90]. This observation suggests a simple (likely over-
simplified) dichotomy for endocytosis: CME mediated by specific
protein-protein interactions is responsible for internalizing non-raft
PM components, while rafts mediate the alternate route for those pro-
teins with specific affinity for ordered membrane domains (Fig. 1).

Possible analogs for clathrin-coated pits in this raft-mediated
endocytic route are caveolae — small tapered invaginations of the
plasma membrane observable under electron microscopy [91]. These
caveolar invaginations appear to be intermediates in raft-associated
(but notably clathrin-independent) trafficking pathways, especially en-
docytosis from the PM [92] (for discussion of mechanisms of caveolar
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trafficking, see Section 4.1). The two key pieces of evidence for the rela-
tionship between caveolae and lipid rafts are the enrichment of raft
components in caveolae and the sensitivity of caveolae-mediated traffic
to perturbation of raft lipids. Both cholesterol and sphingolipids are
highly enriched in caveolae, even compared to the relatively
cholesterol-/SL-rich PM [93]. Similarly, several raft-associated proteins
were shown to be included in caveolae [94], and more importantly, to
induce the genesis of caveolar trafficking intermediates upon their
cross-linking (which, as described below, stabilizes and coalesces raft
domains) [95]. This crosslink-mediated raft coalescence is the mecha-
nism that might be responsible for the internalization of pathogens or
bacterial toxins that target cellular glycosphingolipids like cholera and
SV40 for GM1 [96] and Shigella dysenteriae for Gb3 [97].

Despite the central role of caveolae in raft-associated endocytosis,
robust clathrin-independent endocytosis can be observed even in cells
without caveolae [86]. These observations led to the characterization
of non-clathrin/non-caveolar endocytic routes (Fig. 1), which remain
better defined by what they are not, than what they are and how they
work. The most prominent example is the CLIC/GEEC system — i.e.
Clathrin-Independent Carriers (CLIC) and GPI-Enriched Endocytic
Compartments (GEEC) [86,98]. This pathway is largely defined by its in-
ternalization of proteins anchored to the extracellular leaflet of the PM,
including GPI-anchored proteins and the GSL-binding toxins described
above, as well as its independence for caveolin, clathrin, and dynamin,
the necessary scission factor in CME [99]. It is tempting to speculate
from (1) the cholesterol-sensitivity of the CLIC/GEEC pathway; (2) the
significant overlap between its cargo and that of caveolin-mediated en-
docytosis; and (3) the coordinate regulation of caveolin and GEEC by
Cdc42 [99,100], that the core molecular machinery for both of these
pathways is linked to ordered membrane domains; however, a clear
molecular description of that machinery remains elusive. A similar
case can be made for Arf6-mediated trafficking, which is poorly charac-
terized but appears to be a route for both endocytosis and recycling of
raft-associated cargo to the PM [101] (See Table 1).

A surprising recent set of observations supports raft-associated en-
docytosis via a novel endocytic mechanism known as Massive ENDocy-
tosis (MEND). In MEND, up to 50% of the PM can be endocytosed in a
matter of minutes, induced by large intracellular calcium transients.
The hypothesized cause for this effect is an unregulated coalescence of
raft domains leading to endocytosis [102].

3.2. Deeper down: raft-associated sorting in endosomal progression,
recycling, and degradation

Although most of the attention in endocytic trafficking has been on
internalization of specific components from the PM domains are likely
integrated into all aspects of endocytic traffic (Fig. 1). In analogy to the
vectorialflow of the secretory system (i.e. ER-to-PM), the endocytic sys-
tem can be conceptualized as a two-way highway, with bulk traffic pro-
ceeding towards the cellular waste bin – i.e. the lysosome – and a robust
pathway for recycling internalized components back to the PM (note:
while the various endocytic compartments are typically referred to as
discrete cellular locations, it is probably more accurate to conceptualize
themas amaturing continuum, from small, neutral endocytic vesicles to
larger, more acidic degradative compartments). Moreover, in polarized
epithelia, these endocytic pathways are complicated by the presence of
two different “source” compartments — i.e. the apical and basolateral
PMs. These are associated with specialized apical and basolateral
recycling endosomes (ARE and BRE, respectively), which converge/ma-
ture into a common recycling endosome (CRE). The divergence of lipid
composition in those compartments has not been clearly delineated, but
it is a reasonable prediction that they reflect the specific membrane
compositions of their sources/destinations.

The main location for raft involvement in these processes is the cen-
tral sorting compartment of the endocytic system, the early endosome
(EE) (Fig. 2). The EE is the primary destination of most endocytosed
material, and is also the site of bifurcation for the degradative and
recycling pathways. Its structure contains both reticulated tubules
characteristic of the recycling endosome (RE — the intermediate for
endosomal recycling back to the PM) and a multivesicular vacuole re-
sembling the late endosome (Fig. 2). Both EEs [103] and REs [104] are
enriched in cholesterol, sphingomyelin, and phosphatidylserine (PS)
[105], as well as caveolin [104]. In striking contrast, these same compo-
nents are largely depleted from late endosomes (LEs) [103,105,106],
though there is evidence for raft domains in LEs [107]. These findings
prompt the hypothesis that rafts mediate one route for recycling of spe-
cific membrane components from the EE to the PM (via the RE) (Fig. 2).

This hypothesis has recently received striking experimental confir-
mation. Our group generated panels of mutants of several single-
spanning PM proteins to yield variants with experimentally defined
raft affinities ranging from completely raft-excluded to raft-enriched.
Rather than relying on detergent resistance (which can be artifact-
prone [38,39] and intractable for quantification [40]), we quantified
raft association using Giant Plasma Membrane Vesicles [18,20,108]
(Fig. 2) and observed a clear relationship between raft affinity and PM
localization. While all raft-partitioning variants were enriched at the
PM, a variety of unrelated mutants with abrogated raft affinity
accumulated in late endosomes and lysosomes, via transit through EEs
[109]. These observations were explained by a model wherein PM pro-
teins are constitutively endocytosed, then recycled from the EE via their
associationwith raft domains. If raft associationwas abrogated, proteins
not equipped for an alternative recycling route (e.g. coat/adapter pro-
tein recognition sequences), were degraded through a bulk endosomal
maturation pathway (Fig. 2).

Although these findings were consistent across different cell lines
[109], raft-mediated recycling has previously been shown to be cell-
type dependent. A dramatic example is the trafficking of GPI-APs be-
tween CHO and BHK cells, two common, fibroblastic cell lines. In CHO
cells, internalized GPI-APs are recycled from EEs to REs to the PM
[110], via their association with rafts [111]. Interestingly, when raft as-
sociation is perturbed by modifying the lipid anchor (to bear non-raft
preferring unsaturated acyl chains), proteins also recycled to the PM,
but at a different rate, comparable to other non-raft cargo [111,112].
In contrast, in BHKs, both raft and non-raft variants of lipid-anchored
proteins were targeted for the LE, and degradation in the lysosome
[110,112].

An alternative, non-exclusivemechanism to explain the depletion of
raft components from late endosomes and lysosomes is that cholesterol
is selectively enriched in the intraluminal vesicles (ILVs) that give LEs
their characteristic multivesicular body (MVB) appearance [113]. The
ILVs are destined for degradation or secretion, suggesting a specific
mechanism for removal of raft lipids from the endocytic cycle. ILV for-
mation is mediated by the ESCRT complex, suggesting that this machin-
erymay have specificity for recruiting and deforming raft domains, both
in the LEs and otherwise. Remarkable recent observations in yeast have
definitively demonstrated the potential for large-scale lateral domain
formation in degradative endosomes, specifically the yeast vacuole. A va-
riety of metabolic challenges induced swelling of the vacuoles such that
they were observable by light microscopy and a clear, sterol-dependent
coexistence of two liquid domains was observed in the vacuolar
membranes [22]. We speculate that this dramatic effect was observable
because the cellular stresses prevented the selective removal of raft lipids
from LEs and lysosomes causing phase separation.

An intriguing hypothesis [114] is that the specific recruitment of raft
material into the internal vesicles of LEs results in some diseases charac-
terized by dysfunctional lysosome catabolism. Such lysosomal storage
diseases (LSDs) comprise several dozen disorders, all characterized by
the accumulation of undegraded lysosomal material, resulting in lyso-
somal proliferation and hypertrophy, and often-severe neuronal dys-
functions [115]. Canonical raft components (sphingolipids, glycolipids,
cholesterol) are often over-represented in the accumulated, undegraded
material [116,117], particularly in sphingolipidoses, which comprise a



Fig. 2. Transmembrane domain-dependent raft association and endosomal recycling. Early endosomes are key sorting stations for internalizedmembrane cargo. Endocytosedmembrane
proteins are recycled to the PM by two parallel routes. For non-raft proteins (red), specific amino acid motifs in their cytosolic domains recruit coat/adapter machinery, which both sort
components and aid in the generation of a transport vesicle. Proteins requiring raft association for recycling (blue) partition into orderedmembrane domains due to their transmembrane
domains (TMD) [109] and post-translationalmodifications [20,45], and are packaged into a raft-enriched recycling carrier destined for the PM(possibly via recycling endosomes). Proteins
with neither recycling signal (red TMDbut no adapter protein recognition sequence) are retained in the endosomal system, for eventual degradation in the lysosomes. Raft association can
nowbedirectly quantified by observing isolated plasmamembrane vesicles [108,109], which separate into coexisting domains that selectively recruitmembrane proteins. The right image
is of a plasma membrane vesicle from a cell expressing a raft protein (linker for activation of T-cells — LAT-GFP), stained with a non-raft marker lipid. The image at the top is a similar
preparation, but the tagged protein is the non-raft Transferrin Receptor (TfR-GFP). Images at the left show colocalization between LAT with a non-raft TMD and a lysosomal marker.
For details, see Ref. [109].
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relatively large group of lysosomal storage diseases including Fabry,
Niemann–Pick, and Tay–Sachs diseases. Moreover, raft lipids seem to be
inseparable travel partners, as failure to degrade one type (e.g. cholester-
ol) often leads to accumulation of other types (e.g. sphingolipids)without
a specific defect in their catabolism [117,118]. Although the molecular
pathophysiology of these sphingolipidoses remains unresolved, it is pos-
sible that altered cholesterol/sphingolipid homeostasis resulting from
the co-recruitment of raft lipids into lysosomes leads towide-ranging del-
eterious effects [114].
4. Molecular machinery for raft-mediated sorting

Although the raft concept emphasizes lipid-driven membrane self-
organization as a key mechanistic contributor to cellular logistics,
these functions clearly require extensive proteinaceous molecular ma-
chinery for efficient and accurate trafficking. A hypothesized exception
to this requirement is the budding of raft-enriched vesicular carriers
from their host membranes driven by the line tension (two-dimensional
analog of surface tension) present at the interface between unlike mem-
brane regions [119]. This edge energy – the same force that produces
spherical droplets in three-dimensional emulsions and circular domains
in planar membranes – is dependent on the length of the domain inter-
face, which could be reduced by deforming the planar domain into a
bud in order to minimize edge length. In theory, such a mechanism
could potentially lead to complete vesicle budding as the edge length is
driven to zero [119]. This drive to minimize the line tension is opposed
by the energy necessary to bend a planar bilayer into a curved vesicle,
with the competition between these two forces determining the extent
of budding. Unfortunately, direct estimation for membrane parameters
like line tension, bending rigidity, and intrinsic curvature is difficult for bi-
ological membranes, especially the membranes of internal organelles
where much trafficking occurs. The current understanding is that a
strictly domain-induced mechanism for vesicle budding is unlikely be-
cause the difference between coexisting domains, and thus the tension
between them, is likely to be small in biomimetic membranes [120], or
even non-existent, as would be the case for a critical system [21]. Small
tensions would require micrometer-sized domains to induce domain
budding, and such domains are generally not observed in living cells,
evenunder raft-coalescing conditions. Thus, as is the case formost cellular
functions, proteins play a primary role in raft dependent sorting (Fig. 1).
4.1. Caveolin, flotillin, and caveolae

The protein most associated with lipid rafts in cellular traffic is
caveolin. Originally identified as a phosphorylation target of v-Src and
potential mediator of oncogenesis [121], VIP21/caveolin was soon de-
scribed as the core component of caveolae [122] and amajor constituent
of apically directed transport vesicles [123]. It has since been shown to
be widely expressed and required for inducing caveolae in a variety of
cell types (reviewed in Ref. [91,94]), remarkably including prokaryotes
[124]. Caveolin binds cholesterol directly [125] and its function is sensi-
tive to cholesterol depletion [122]. Correspondingly, caveolin itself is
highly enriched in DRMs — indeed it is widely used a raft marker,
though it likely defines a subset of raft domains involved in caveolin-
mediated traffic. Importantly, caveolin only associates with the raft-
enriched membrane fractions after its oligomerization, and this oligo-
merization is stabilized by raft lipids present in PMs and the late Golgi
[126,127]. These observations suggest caveolin oligomerization (likely
mediated by co-factors including the other caveolin family members
Cav2 and Cav3, as well as cavins [91]) as one possible driving force
for raft coalescence and functionalization, and feedback regulation be-
tween this oligomerization and raft lipids.

A second protein family involved in functional raft coalescence is the
flotillins (aka reggie1 and 2). Both family members are highly DRM-
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enriched [128], though unlike caveolins, they are not integral mem-
brane proteins and therefore require lipid modifications for stable
membrane attachment. Like caveolins, flotillins tend to oligomerize
[128], with oligomerization required for endocytosis [129]. In polarized
epithelia, the internalization of raftmarkers GPI-APs and cholera toxin is
strongly dependent on flotillin expression [130,131], a fact made more
remarkable considering that neither set of proteins crosses the mem-
brane, thus precluding any direct protein–protein interaction with the
intracellular flotillin [130].

Finally, there remain several mysterious partners involved in
raft-mediated vesicle generation, implicated through crude proteomic
characterization of apical transport vesicles in MDCK cells [27]. Among
these is VIP17/MAL [132], a small proteolipid that can oligomerize, in-
duce membrane domains [133], and affect trafficking [132,134];
annexin 13b, an epithelial specific isoform [135] responsible for raft-
mediated traffic in MDCKs [136]; and galectin-9, an extracellular lectin
that binds and crosslinks raft glycosphingolipids [137].

4.2. Arf6 and other machinery

In addition to the core machinery associated with raft trafficking,
there is a plethora of supporting players that are necessary to mediate
specific targeting, identification, and fusion to destination compart-
ments [138]. One of the best characterized of these is the Ras superfam-
ily small GTPase Arf6 [139]. Small GTPases, like Rho, Rac, and the many
Rab family proteins, are ubiquitous regulators of cytoskeletal andmem-
brane dynamics, relying on switchable activity mediated by GTP hydro-
lysis for their rapid and dynamic regulation. Although they are not
themselves protein coats, several members of the Arf family recruit
clathrin and potentially other coat/adaptor proteins [140]. Unlike the
other Arf proteins, Arf6 is localized to the PM and early endosomes,
where it appears to be directly involved in both endocytosis and
recycling of raft-like membranes [101]. To some extent, Arf6 appears
to mediate its own distinct non-clathrin/non-caveolar pathway that
also does not enrich for GPI-APs [141]. This pathway has been shown
to be important in processing of the amyloid precursor protein (APP),
the source of the amyloid peptides accumulated in Alzheimer's disease,
where it facilitates the endosomal rendezvous between APP and the
beta-secretase (BACE1) required for peptide generation [142]. Such
amyloidogenic processing has previously been associated with lipid
rafts [143], further implicating Arf6 as a key mediator of raft traffic. Mi-
crotubules are proposed to be the cellular track taken by Arf6/raft vesi-
cles [101,144], with the minus-end directed motor KIFC3 as the carrier
[145]. Finally, several SNAREs have been implicated in raft vesicle fusion
and targeting, including syntaxin 3, SNAP-23, and VAMP7 [146], as well
as VAMP4 and syntaxin 2 [147].

5. Perspective

As with much of our current understanding of cellular functions
that rely on collective properties rather than individual molecular com-
ponents, membrane sorting and trafficking between cellular organelles
remain largely mysterious. Rafts clearly play an important role in these
processes; however, the paltry list of molecular players in Section 4 and
the lack of structural insight into their mechanisms of action suggest
that the details of how rafts are coalesced, budded, trafficked, and
targeted are unresolved. Much of the difficulty arises from the inherent
interconnectedness and redundancy of membrane traffic. Although
Fig. 1 suggests step-wise, discreet pathways, in reality, there is extensive
crosstalk between the secretory and endosomal systems, with direct
membrane exchange possibly occurring between all compartments.
Moreover, the plethora of trafficking options in the cell allows cargo to
take “alternate” routes when a given pathway is abrogated. It remains
an open question whether all of the endosomal routes associated with
raft domains (described in Section 3) share core machinery, or whether
each is truly distinct.
An underappreciated consideration is that almost all studies aimed
at elucidating raft properties have focused on the only easily accessible
membrane of the cell (the PM), despite there being no a priori reason to
believe that intracellular membranes should have similar rafts to the
PM. Indeed, rafts are almost certainly different in each compartment
of a cell because of the uniqueprotein/lipid composition of any given or-
ganelle. Thus, it is probably more accurate to conceptualize lipid rafts as
amechanism formembrane organization, rather than specific entities of
strictly defined compositions and physical properties (e.g. size) [16].
The impact of such raft diversity on subcellular sorting can only be spec-
ulated, but it is possible that the compositions of the major membrane
sorting stations in the cell (TGN and early endosome) may promote a
more robust separation of raft fromnon-raft domains thanwould be ob-
served at the PM.

Although caveolin is almost certainly a key raft-traffickingmediator,
there is no comparison between it and the level of mechanistic insight
into clathrin-mediated endocytosis. Caveolin-mediated membrane
budding and specific selection of raft components into in vitro caveolae
have not been reconstituted (though demonstrated in a cell-free assay
[148]), thus there is no evidence for whether caveolin comprises the
minimal required machinery for raft sorting. Moreover, the specific re-
cruitment of proteins into raft domains underlies the functional rele-
vance of rafts, but the structural determinants by which
transmembrane proteins are recruited into raft domains are only now
starting to become elucidated [45,109,149,150].

The evidence presented above makes a strong case for lipid-
mediated, lateralmembrane domains in subcellular sorting and traffick-
ing. Moreover, the ubiquity of this involvement suggests a simple orga-
nizing principle for cellular traffic, wherein lipid-driven domains
interface with protein machinery. However, a mechanistic description
of this simple principle remains elusive, with tangled, interconnected
pathways often sharing cargo andmachinery both spatially and tempo-
rally. We hope that this confusion will be resolved by a combination of
nanometer-resolution imaging methods [151,152], advances in func-
tional membrane protein reconstitution [153], and a more accurate un-
derstanding ofwhat rafts are, what they are not, andwhat they do in the
cell.
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